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Radiotherapy is widely used for the treatment of cancer patients, but tumor radioresistance presents serious therapy
challenges. Tumor radioresistance is closely related to high levels of mTOR signaling in tumor tissues. .erefore, targeting
the mTOR pathway might be a strategy to promote solid tumor sensitivity to ionizing radiation. Radioresistance is
associated with enhanced antioxidant mechanisms in cancer cells. .erefore, examination of the relationship between
mTOR signaling and antioxidant mechanism-linked radioresistance is required for effective radiotherapy. In particular,
the effect of mTOR signaling on antioxidant glutathione induction by the Keap1-NRF2-xCT pathway is described in this
review. .is review is expected to assist in the identification of therapeutic adjuvants to increase the efficacy
of radiotherapy.

1. Introduction

Ionizing radiation is a therapeutic method that can induce
cell death in tumors through direct or indirect damage, such
as covalent bond breakage and reactive oxygen species
(ROS) accumulation in cells [1–3]. Although radiotherapy
efficacy is somewhat different depending on tumor type,
excellent outcomes have been shown in many clinical re-
ports [4]. .erefore, approximately 50% of patients with
solid tumors undergo radiotherapy [5]. However, radio-
resistance has been observed in several types of tumors,
including melanoma [6, 7]. In general, radiation upregulates
radioresistant genes in tumor cells [8]. .ese upregulated
genes are closely related to survival mechanisms, such as
DNA repair, metabolic changes, tumor recurrence, and
malignant transformation [9]. .us, controlling the signals
associated with radiation-induced resistant genes might be a
major strategy in radiotherapy to reduce the irradiation
burden in the host [10, 11]. For this reason, the discovery of
adjuvants targeting radioresistant molecules is important for
effective radiotherapy [12, 13].

mTOR is a major signaling protein that can affect cell
survival through interaction with other cellular signal cas-
cades. mTOR, which is a serine-threonine kinase, can form
two distinct multiprotein complexes, mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2) [14].
mTORC1 consists of five proteins, namely, mammalian
target of rapamycin (mTOR), regulatory-associated protein
of mTOR (Raptor), proline-rich AKT substrate 40 kDa
(PRAS40), DEP-domain-containing mTOR-interacting
protein (Deptor), and mammalian lethal with Sec13 protein
8 (mLST8) [15]. In general, mTORC1 activation is known to
be regulated by energy status, amino acids, oxygen condi-
tions, and various growth factors (Figure 1) [16]. Once
mTORC1 is activated, lipid synthesis, protein synthesis,
mitochondrial metabolism, and microtubule organization
can be induced in cells [17]. However, autophagy is actually
inhibited by mTORC1 as indicated in Figure 1. Sterol
regulatory element-binding protein 1 (SREBP1) can stim-
ulate lipid synthesis, but it is suppressed by lipin 1 in the
nucleus [18]. However, activated mTORC1 promotes
SREBP1-mediated lipid synthesis through inhibiting lipin 1
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translocation into the nucleus by inducing its phosphory-
lation [19]. Peroxisome proliferator-activated receptor-c
coactivator-1α (PGC-1α) controls mitochondrial biogenesis
and promotes mitochondrial metabolism [20]. In addition,
PGC-1α regulates ROS generated during mitochondrial
oxidative phosphorylation (OXPHOS) [21]. mTORC1 ac-
tivates these functions of PGC-1α [22]. Furthermore,
mTORC1 not only promotes microtubule organization
through cytoplasmic linker protein-170 (CLIP-170) phos-
phorylation but also controls protein synthesis via the ri-
bosomal protein S6 kinase beta-1 (S6K1) and the eukaryotic
translation initiation factor 4E (eIF4E)-binding protein 1
(4E-BP1) [23, 24]. Moreover, mTORC1 inhibits Unc-51-like
autophagy activating kinase 1- (ULK1-) mediated autophagy
[25]. Because mTOR is connected to networks formed by
various signaling pathways in the cell survival process,
mTOR signaling is important in tumor studies.

.e PI3K/AKT/mTOR pathway is associated with tu-
morigenesis, metastasis, and tumor therapeutic resistance
[26]. In particular, the survival of tumor patients is affected
by upregulated PI3K/AKT/mTOR cascade activity. mTOR
phosphorylation was observed in 64.1% of tumor tissues
obtained from gallbladder cancer (GBC) patients, and
mTOR phosphorylation levels were associated with poor
prognosis in these patients [27]. .e poor survival of human
hepatocellular carcinoma (HCC) patients was related to
enhanced levels of phospho-AKT (491/528; 92.99%) and
phospho-S6 (466/528; 88.26%) in their tumor tissues [28].
.e induction of mTOR activation was also associated with
poor prognosis in solid tumor patients, such as breast
cancer, melanoma, gastric cancer, and urothelial carcinoma
[29–32]. Although enhanced mTOR signaling activation has
been reported to not be associated with the survival of some
tumor patients, targeting mTOR signaling is still a rea-
sonable approach for tumor radiotherapy [33–36]. Any
protein in the PI3K/AKT/mTOR pathway can be targeted
for the clinical inhibition of mTOR activation in tumor
tissues [37, 38]. In particular, clinically targeting mTOR

signaling during radiotherapy could increase tumor radio-
sensitivity [39]. Sirolimus analogs (rapalogs and mTOR
inhibitors), such as everolimus, temsirolimus, and ridafor-
olimus, not only improved radiotherapy efficiency but also
reduced tumor recurrence [40–43]. .ese previous studies
implicate that blocking mTOR signaling in tumors might be
an effective strategy in radiotherapy.

High levels of antioxidant molecules in tumors have
been identified as factors that make antitumor therapy
difficult in many previous studies [44, 45]. .erefore, tar-
geting antioxidant mechanisms might be a good therapeutic
strategy for efficient radiotherapy [46]. Recent studies have
reported that antioxidant mechanisms can be regulated by
mTOR signaling [47–49]. In this review, the effects of mTOR
inhibition on the antioxidative Keap1-NRF2 pathway in
solid tumors during radiotherapy and the underlying
mechanisms are assessed.

2. mTOR Activates Antioxidant Defense
Mechanisms in Radioresistant Solid Tumors

2.1. Mitochondrial ROS Generation and the KEAP1-NRF2
Pathway. NADH generated during glycolysis and the tri-
carboxylic acid (TCA) cycle transfers two electrons to
complex I (NADH: ubiquinone oxidoreductase) in the
mitochondrial matrix [50]. FADH2 produced in the TCA
cycle also transfers electrons to complex II (succinate de-
hydrogenase) [51]. Electrons from complexes I and III are
subsequently transferred to ubiquinone, complex III (co-
enzyme Q cytochrome C reductase), and complex IV (cy-
tochrome c oxidase) [52]. Complex IV transfers electrons to
oxygen, and then, reduced oxygen forms water via a reaction
with two hydrogen ions [53]. H+ ions are pumped into
mitochondrial intermembrane spaces through complexes I,
III, and IV during electron transfer processes, and a hy-
drogen ion gradient is generated around the inner mito-
chondrial membrane [54]. ATPs are synthesized using the
energy induced by H+ ions entering into the intermembrane
spaces through complex V (ATP synthase) [55]. Electrons
leaked from complexes I and III partially reduce oxygen to
form ROS, such as superoxide during OXPHOS [56]. Ap-
proximately 90% of intracellular ROS are estimated to be
produced during OXPHOS in mitochondria [57]. Proper
ROS levels stimulate cell proliferation, mediate signal cas-
cades, and initiate immune responses, but excessive ROS
levels lead to cell death [58]. .erefore, when ROS are in-
duced, the cell activates antioxidant mechanisms for ho-
meostasis [59]. Once superoxide is produced in
mitochondria, manganese superoxide dismutase (MnSOD/
SOD2) converts it to hydrogen peroxide [60]. Hydrogen
peroxide, one of the ROS, must be converted to water.
Glutathione (GSH) and thioredoxin (TRX) systems con-
trolled by the Kelch-like ECH-associated protein 1-nuclear
factor erythroid 2-related factor 2 (KEAP1-NRF2) pathway
are required for this chemical change (Figure 2) [61]. In-
tracellular oxidative stress can directly and immediately
promote the expression of antioxidant enzymes via the
KEAP1-NRF2 pathway [62]. KEAP1 induces NRF2 degra-
dation through its polyubiquitination on the NRF2-ECH
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Figure 1: .e functions of mTOR complex 1 (mTORC1). Intrinsic
or extrinsic stimulators, such as energy levels, amino acids, oxygen
levels, and various growth factors, induce mTORC1 activation.
Once mTORC1 signaling is activated, lipid synthesis, mitochon-
drial biogenesis, and protein synthesis are promoted in the cells.
mTORC1 also organizes microtubules and suppresses autophagy.
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homology-like domain 2 (Neh2) domain of NRF2 in cells
under normal conditions [63]. However, when intracellular
ROS are induced, ROS oxidize cysteine residues in the in-
tervening region (IVR) of KEAP1, and structurally modified
KEAP1 is detached fromNRF2 [64]. Free NRF2 translocated
into the nucleus forms a heterodimer with small muscu-
loaponeurotic fibrosarcoma (sMaf), and the transcriptional
factors then bind to antioxidant response elements (AREs)
to promote antioxidant gene expression [65]. SLC7A11
(xCT) forms a complex known as the xCT system, with
CD98 (SLC3A2 or 4F2) and the CD44 variant isoform
(CD44v) [66]. CD98 and CD44v contribute to the stability of
the xCT system; in particular, CD44v helps to locate xCTon
the cell surface [67]. .e xCT system, a cystine-glutamate
antiporter, mediates the influx of extracellular cystine and
the efflux of glutamate transformed by glutaminase 1 (GLS1)
from glutamine [68]. One cystine molecule transported into
the cell is reduced to two cysteine molecules by cystine
reductase (CR) [69]. Cysteine and glutamate are synthesized
to c-glutamyl-cysteine via heterodimeric glutamate-cysteine
ligase (GCL) consisting of GCLC (catalytic subunit) and
GCLM (modulating subunit), and the ligated product is then
converted to glutathione via the glutathione synthetase-
(GSS-) mediated addition of glycine [70]. Glutathione
peroxidase (GPX) promotes H2O2 reduction to H2O during
the oxidation of GSH (reduced form) to glutathione disulfide
(GSSG, oxidized form) [71]. Oxidized GSSG is returned to

the reduced form of GSH by glutathione reductase (GSR)
[72]. In addition to the GSH system, NRF2 induces gene
expression of the TRX system [73]. .ioredoxin reductase
(TXNRD) oxidizes NADPH to NADP+ to reduce the oxi-
dized form of thioredoxin (TXN) [74]. .e reduced TXN
induces H2O2 reduction to H2O through the redox reaction
of peroxiredoxin (PRX) [75]. .us, the KEAP1-NRF2
pathway can be regarded as an essential mechanism for
antioxidant defense.

2.2. mTOR-Dependent Antioxidant Mechanism in Solid
Tumors. ROS can be controlled by NRF2-mediated anti-
oxidant mechanisms in normal cells, consequently main-
taining cellular homeostasis [76]. However, in various solid
tumors, because antioxidant mechanisms are activated at
higher levels than in normal cells, tumor cells can be more
tolerant to excessive ROS levels than normal cells [77].
NRF2-dependent antioxidant enzymes such as SOD, glu-
tathione peroxidase (GPX), glutathione reductase (GSR),
peroxiredoxin (PRX), and thioredoxin reductase (TXNRD)
are upregulated in tumor cells, and high expression of these
proteins is associated with poor prognosis in tumor patients
(Table 1) [78–83]. Mitochondrial SOD2 was shown to be
highly expressed in ovarian cancer patients and contribute to
antitumor therapy resistance [84]. Non-small-cell lung
cancer (NSCLC) cells overexpressing GPX1 were resistant to
cisplatin-induced ROS through PI3K/AKT pathway acti-
vation [85]. In pancreatic cancer cells, GPX4 was shown to
be essential for the maintenance of stemness, and PRX1 was
required for p38-mediated invasion [86]. A high level of
PRX2 in colorectal cancer patients was associated with tu-
mor progression and poor diagnosis [87]. Inhibition of GSR
and TXNRD attenuated tumor growth in an NSCLC patient-
derived xenograft model [88]. High c-glutamylcysteine
synthetase (c-GCS) activity in human HCC cells was related
to radioresistance [89]. In general, radiation promotes GSH
synthesis [90]. Because rapamycin and everolimus can affect
GSH synthesis, the use of mTOR inhibitors might increase
the effectiveness of radiotherapy [91, 92]. In addition to
antioxidant enzymes, the NRF2-dependent xCT system
could promote the radioresistance of solid tumors. xCTwas
related to radioresistance in human breast cancer and mouse
melanoma cell lines [93, 94]. CD98 contributed to radio-
resistance in head and neck squamous cell carcinoma [95].
CD44v induced radioresistance in human pancreatic cancer
cells via increasing xCT stability [96]. .ese results suggest
that antioxidant proteins controlled by the KEAP1-NRF2
pathway could be factors that make tumor therapy difficult.
.erefore, targeting the KEAP1-NRF2 pathway might be a
strategy to improve the efficacy of radiotherapy. In a recent
study, xCT was reported to be modulated by mTOR sig-
naling in human melanoma subjected to radiation [97]. .e
transcriptional activity of NRF2 can be regulated by mTOR
inhibitors. Temsirolimus suppressed NRF2 translocation
into the nucleus in RCC4 cells, a human renal cell carcinoma
(RCC) cell line [98]. Everolimus reduced the phosphory-
lation of NRF2 in ARPE-19 adult retinal pigment epithelial
cells [99]. In general, KEAP1 is important for the
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Figure 2: NRF2-mediated pathway of glutathione synthesis. .e
expression of antioxidant proteins (blue) can be induced by the
Keap1-NRF2 pathway. Cystine introduced into the cytoplasm via
xCT (SLC7A11) is converted to cysteine by cystine reductase (CR).
Glutamine is converted to glutamate by glutaminase 1 (GLS1).
Glutamate and cysteine bind and are transformed to c-glutamyl-
cysteine by glutamate-cysteine ligase (GCL). Glutathione synthe-
tase (GSS) induces glutathione (GSH) synthesis via inducing a
covalent bond between c-glutamyl-cysteine and glycine. Gluta-
thione peroxidase (GPX) oxidizes GSH to GSSG with H2O2 re-
duction to H2O. GSSG can then be reduced by glutathione
reductase (GSR). In addition to the GSH system, the thioredoxin
(TRX) system (thioredoxin reductase (TXNRD), thioredoxin
(TXN), and peroxiredoxin (PRX)) also comprises NRF2-mediated
antioxidant proteins.

Journal of Oncology 3



transcriptional regulation of NRF2. Intracellular ROS pro-
mote NRF2 activity through the structural transformation of
KEAP1 [64]. KEAP1 can also be dissociated from NRF2 by
mTORC1. mTORC1 phosphorylates serine 351 in the
Keap1-interacting region (KIR) of sequestosome 1
(SQSTM1/p62) [100]. Phosphorylated SQSTM1/p62 pro-
motes KEAP1 degradation during selective autophagy [101].
Degradation of KEAP1 via autophagy activation does not
necessarily occur in an mTOR-dependent manner
[102, 103]. Moreover, mRNA expression of NRF2 is de-
pendent on the transcriptional activity of eIF4F [104]. Ac-
tivated mTORC1 signaling disturbs the inhibitory effect of
4E-BP1 on eIF4E through the phosphorylation of 4E-BP1
[105]. In other words, mTORC1 signaling activation could
mediate NRF2 expression. Tuberous sclerosis complexes 1
and 2 (TSC1 and TSC2), also known as hamartin and
tuberin, respectively, attenuate mTORC1 activity via
inhibiting Ras homolog enriched in brain (Rheb) [106]. In a
TSC1-null bladder cancer xenograft model, not only
mTORC1 hyperactivation but also upregulated NRF2,
GCLM, GCLC, and GSR expressions were observed [107].
Overall, previous studies suggest that the antioxidant
mechanism could be mediated by NRF2 and that NRF2
expression and activation could be dependent on mTOR
signaling (Figure 3).

2.3. 1e Regulation of Antioxidant Defense via mTOR In-
hibition in Solid Tumors Subjected to Radiation. Tumor tis-
sues are formed by the uncontrolled proliferation of cancerous

Table 1: Glutathione synthesis-related proteins in the poor prognosis of tumor patients.

Type of cancer Level Effects Ref.

Glutathione peroxidase (GPX)

Breast cancer High Metastasis↑ [80]Patient mortality↑
Bladder cancer High Recurrence↑ [91]

Oral squamous cell carcinoma High Metastasis↑ [92]Poor survival↑

Gastric carcinoma High Metastasis↑ [108]Progression↑

Hepatocellular carcinoma High Poor prognosis↑ [109]Recurrence↑

Glutathione reductase (GR) Glioblastoma High Drug resistance↑ [81]Poor survival↑

Glutamate-cysteine ligase (GLC)

Hepatocellular carcinoma High
Progression↑

[110]Drug resistance↑
Poor survival↑

Breast cancer High Drug resistance↑ [111]
Melanoma High Malignancy↑ [112]

Lung adenocarcinoma High Recurrence↑ [113]Poor survival↑

Glutaminase 1 (GLS1)

Colorectal cancer High
Metastasis↑

[114]Poor prognosis↑
Poor survival↑

Hepatocellular carcinoma High
Malignancy↑

[115]Poor prognosis↑
Cancer stem cells

Breast cancer High In HER2-type↑ [116]

SLC7A11 (xCT)

Colorectal cancer High Recurrence↑ [117]Poor survival↑
Non-small-cell lung carcinoma High Poor survival↑ [118]

Glioma High Poor survival↑ [119]
Hepatocellular carcinoma High Poor survival↑ [120]

Breast cancer High Poor prognosis↑ [121]
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Figure 3: .e effect of mTORC1 on NRF2 expression and activation.
.e activation of mTORC1 promotes the transcriptional activation of
eIF4F..e eIF4F complex can induce NRF2mRNA expression. NRF2
translocation into the nucleus is restricted because of its attachment to
KEAP1. However, mTORC1 activation can induce the phosphory-
lation of p62 (at serine 351) and promote NRF2 translocation into the
nucleus through p62-mediated KEAP1 degradation.
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cells [122]. As tumor tissues develop, it is difficult for some
tumor cells to obtain nutrients and oxygen because blood
vessels are unevenly distributed in tissues [123]. In particular,
OXPHOS and ROS production inmitochondria depend on the
supply of oxygen [124]. .erefore, the oxygen levels in the
tumor microenvironment should be considered in the regu-
lation of antioxidant defense throughmTOR inhibition in solid
tumors. Mitochondrial OXPHOS is stably induced in tumor
cells under sufficient oxygen supply, but not under pseudo-
hypoxic conditions [125]. Although higher ROS levels are
induced in tumor cells than in normal cells, ROS levels could be
properly controlled through the KEAP1-NRF2 pathway [126].
Because tumor cells are exposed to nutrients and various
growth factors, such as epidermal growth factor (EGF), fi-
broblast growth factor (FGF), and vascular endothelial growth
factor (VEGF), mTOR signaling activation is promoted in the
cells under normoxic conditions [127]. Moreover, radiation
promotes not only ROS generation but also OXPHOS. In
general, radiation causes mitochondrial damage and ROS
production [128]. Irradiated tumor cells might use metabolism
through glycolysis rather than OXPHOS because of mito-
chondrial damage [129]. However, irradiation with a single
dose of 5Gy promoted OXPHOS via mTOR-mediated en-
zymatic inhibition of hexokinase II in tumor cell lines (breast
cancer MCF-7 cells, colon cancer HCT116 cells, and glio-
blastoma U87 cells) associated with the Warburg effect [130].
.is implies that radiation might enhance OXPHOS in rapidly
proliferating tumor cells. .us, the inhibition of mTOR sig-
naling might make tumor cells sensitive to radiation-induced
ROS via the attenuation of NRF2-mediated antioxidant
mechanisms under normoxic conditions. Unlike normal ox-
ygen conditions, hypoxia can be caused in tumor cells located
in tumor tissues with little blood vessel distribution [131]. .e
levels of OXPHOS and ROS generation could be reduced in
tumor cells under persistent hypoxic conditions [132]. Hypoxia
promotes the stability of hypoxia-inducible factor-1α (HIF-1α)
[133]. HIF-1α induces regulated in development and DNA
damage response 1 (REDD1) expression [134]. mTOR activity
is completely inhibited in REDD1-overexpressing cells under
normoxic conditions, and continuous hypoxia can weaken its
activity in tumor cells [135, 136]..erefore, it might be difficult
to expect the regulatory effects of mTOR inhibition on tumor
antioxidant defense under extreme hypoxic conditions.
However, under these conditions, not only might all mito-
chondrial OXPHOS, ROS generation, and mTOR activity be
reduced but also necrotic cell death could be induced in
hypoxic tumor tissues [137]. .erefore, the inhibition of
mTOR signaling is expected to make tumor cells sensitive to
radiation-induced ROS via KEAP1-NRF2 pathway attenua-
tion, except for in the continuously hypoxic regions in the
tumor tissues (Figure 4).

3. Cell Death Mechanisms Induced by mTOR
Inhibition during Radiotherapy

3.1. 1e Promotion of Cell Death by mTOR Inhibition in Ir-
radiated Tumors. Radiation induces reductions in tumor
volumes and inhibits tumor metastasis [138, 139]. mTOR
inhibitors, such as rapalogs, have been demonstrated to

increase the radiosensitivity of tumors in previous studies.
Rapamycin is an efficient drug to enhance radiosensitivity in
various tumor types [39, 140]. Everolimus suppressed epi-
thelial-mesenchymal transition (EMT) and angiogenesis
[35, 40]. Everolimus also inhibited tumor stemness and re-
currence [141, 142]. .erefore, the use of mTOR blockers
might be a rational approach when treating tumor patients
using radiotherapy. Ionizing radiation mainly causes apoptosis
in tumor cells [143]. Various types of cell death including
necrosis, apoptosis, pyroptosis, ferroptosis, and autophagy
could be induced depending on the properties of adjuvants
[144–147]. .e inhibition of mTOR signaling induces auto-
phagy [148]. Tumor cells can survive via autophagy under
nutrient-depleted conditions, but autophagy can cause cell
death in tumors depending on the surrounding environment
[149]. Resistance to apoptosis and radiation has been observed
in various tumor types [8]..us, targetingmTOR signaling can
be effective in inducing autophagic cell death in apoptosis-
resistant tumors during radiotherapy [150].

3.2. mTOR Inhibition and Ferroptosis in Radiotherapy.
Induction of cell death in tumors is an important strategy to
promote tumor radiosensitivity..e induction of ferroptosis has
recently been reported to improve antitumor therapy in a tumor
study [151]. Ferroptosis is a type of cell death with morphology

mTORC1

NRF2

Antioxidant proteins

GSH

Rapalogs
- Sirolimus
- Everolimus
- Temsirolimus
- Ridaforolimus

Radiation

ROS

Figure 4: A strategic proposal for enhancing tumor sensitivity to
radiation via inhibiting mTOR signaling. Activated mTORC1
signaling in tumors might effectively eliminate radiation-induced
ROS through promoting antioxidant mechanisms. However,
inhibiting mTOR signaling might attenuate the antioxidant
KEAP1-NRF2 pathway. .erefore, blockade of mTOR signaling in
tumors might be an alternative strategy to increase tumor sus-
ceptibility to radiation.
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similar to necrosis, accompanied by excessive iron accumulation
and lipid peroxidation [152]. However, unlike necrosis, fer-
roptosis is a form of regulated cell deathmediated by the Fenton
reaction [153]. A recent study showed that IFN-c secreted by
CD8+ T cells can induce ferroptosis in tumor cells during im-
munotherapy with anti-CTLA-4 and anti-PD1 [154]. However,
further investigations are needed to determine whether fer-
roptosis can be induced in tumors to improve radiosensitivity
during tumor radiotherapy. .e inhibition of mTOR activation
can induce autophagy in tumor tissues. Autophagy promotes the
degradation of ferritin, which contains Fe2+, thereby increasing
the Fe2+ level in the cytoplasm [155]. mTOR overexpression
suppressed ferroptosis, whereas mTOR depletion enhanced
ferroptosis in cardiomyocytes [156]. High levels of NRF2 and
GSH inhibited ferroptosis, but mTOR inhibition reduced the
inhibitory effects of both NRF2 and GSH on ferroptosis [157].
.is indicates that ferroptosis might be associated with the
autophagic process [158]. In a recent study, nanoparticles bound
to erastin and rapamycin efficiently suppressed tumor growth
[159]..erefore, the inhibition ofmTOR signalingmight induce
ferroptosis as well as autophagy in irradiated solid tumors.

4. Conclusion

Ionizing irradiation should not only reduce tumor volume
but also suppress tumor recurrence in tumor radiotherapy.
However, because radioresistance is observed in various
solid tumors, the use of proper adjuvants is important to
effectively treat tumor patients. Adjuvants used in radio-
therapy should not only increase the sensitivity of tumors to
radiation but also induce optimal cell death. In particular,
the induction of regulated cell death (RCD) by adjuvants is
imperative in host immunity during radiotherapy. In this
review, the effects of mTOR inhibition on tumor radio-
sensitivity were discussed. Tumor cells can be resistant to
ROS through mTOR-mediated antioxidant defense. .us,
the inhibition of mTOR signaling in these tumor types could
attenuate the expression of antioxidant enzymes and make
tumors sensitive to ROS. In addition, the inhibition of
mTOR might induce RCD, such as autophagy and ferrop-
tosis, in tumors during irradiation. .ere is a lack of vali-
dation of the regulatory effects of mTOR inhibition on
antioxidant mechanisms during radiotherapy. .us, further
studies on mTOR inhibitors are required for efficient ra-
diotherapy. In this review, the attenuation of the KEAP1-
NRF2 pathway through inhibiting mTOR signaling has been
suggested as an approach to enhance radiosensitivity.
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